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Indium(I) iodide as a radical initiator: intramolecular cyclization
of functionalized bromo-alkynes to substituted tetrahydrofurans
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Abstract—Aryl substituted a-carbonyl bromo-alkynes undergo facile cyclizations to the corresponding substituted 4-methylene-tetra-
hydrofurans using indium(I) iodide in acetonitrile under sonication in high yields. The reaction is predicted to proceed via a radical
process initiated by InI and a plausible radical pathway is suggested.
� 2006 Elsevier Ltd. All rights reserved.
The concept and application of radicals has immensely
enriched organic synthesis.1 Although tributyltin
hydride is used as a conventional radical reducing agent
and has wide applications in radical cyclizations toward
the construction of carbocyclic rings,2 its toxicity and
the difficulty of complete removal of tin species from
reaction mixtures has posed serious problems. There-
fore, substantial efforts have been made to find an
alternative to tributyltin hydride.3 Indium-mediated
reactions have attracted considerable interest over the
last decade because of the generally low toxicity of
indium reagents and high efficiency in a variety of reac-
tions.4 Although indium metal has been demonstrated
to participate in single electron transfer (SET) pro-
cesses,4 the use of indium in free radical cyclizations
has not been explored to any great extent. Currently,
efforts are ongoing in this direction and there has been
a recent report of indium metal-mediated radical carbo-
cyclizations,5 although not very satisfactory with regard
to general applicability and yields of the desired prod-
ucts (8–50%). Thus, a search for indium derivatives for
effective radical cyclization is continuing. Recently
In/I2

6 and InCl3–NaBH4
7 have been used for atom-

transfer and reductive radical cyclizations. As part of
our activities on indium-mediated reactions4e,8 and a
current program to explore the novel utilities of ind-
ium(I) iodide9 we report here an efficient InI-promoted
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reductive radical cyclization of appropriately substituted
bromoalkynes to highly functionalized tetrahydrofurans
(Scheme 1). Tetrahydrofuran derivatives are very useful
precursors for the synthesis of a variety of antitumor
agents and are constituents of a large number of sesqui-
terpenes and other natural products.10

Several structurally varied aryl substituted a-carbonyl
bromoalkynes underwent cyclization in the presence of
indium(I) iodide under sonication to give the corre-
sponding substituted 4-methylene tetrahydrofurans
using this procedure.11 The results are summarized in
Table 1. The products were obtained in high purity by
column chromatography over silica gel. The stereo-
chemistry of the substituents was established by com-
parison of their 1H NMR and 13C NMR spectroscopic
data with those reported for known compounds.12

The reactions are, in general clean, although 5–10% of
reduced product was formed, which was separated easily
during purification. Without sonication the reaction did
not proceed at all at room temperature with stirring.
Heating at reflux led to the formation of other unidenti-
fied side products. The optimum amount of InI for an
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Table 1. Synthesis of substituted tetrahydrofurans by radical cycliza-
tion promoted by InI
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a Yields refer to those of pure isolated products characterized by IR
and 1H and 13C NMR spectroscopic data.
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efficient reaction was found to be 1 equiv. The reaction
did not proceed at all in less polar solvents such as meth-
ylene chloride; acetonitrile was found to be the best
choice. The starting bromoalkynes were prepared from
the corresponding cinnamyl esters by reaction with
N-bromosuccinimide in the presence of the appropriate
alcohol following standard procedures.10,13
It was observed that the presence of a radical quencher
such as p-benzoquinone and TEMPO (2,2,6,6-tetra-
methylpiperidine oxide) in the reaction mixture com-
pletely arrested the cyclization process. This indicates
that the reaction possibly proceeds via a radical path.
It was also found that an aryl substituent with an elec-
tron donating group and an a-bromocarbonyl moiety
were two essential requirements for an effective reaction
(a bromoalkyne without these functionalities (entry 12)
did not undergo any cyclization). Possibly, the radical
formed after abstraction of Br is stabilized by the adja-
cent carbonyl functionality, and without such stabiliza-
tion (entry 12) the reaction did not proceed. This
evidence favors radical cyclization and thus a radical
pathway is predicted as outlined in Scheme 2.

In conclusion, the present procedure using indium(I)
iodide as a selective radical initiator provides an efficient
and simple method for the synthesis of highly function-
alized tetrahydrofurans, which are synthetically very
important molecules. The notable features of this
method are fast reactions times (3–4 h), good isolated
yields of products (60–80%), simple purification proce-
dure, and apparent non-toxicity of InI. Most signifi-
cantly, the potential of indium(I) iodide as a radical
initiator is demonstrated and to the best of our knowl-
edge this work reports the first use of InI for this type
of radical cyclization. This observation provides great
promise toward more useful applications of InI in
organic synthesis.
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